101 research outputs found

    Experimental demonstration of the DPTS QKD protocol over a 170 km fiber link

    Get PDF
    Quantum key distribution (QKD) is a promising technology aiming at solving the security problem arising from the advent of quantum computers. While the main theoretical aspects are well developed today, limited performances, in terms of achievable link distance and secret key rate, are preventing the deployment of this technology on a large scale. More recent QKD protocols, which use multiple degrees of freedom for the encoding of the quantum states, allow an enhancement of the system performances. Here, we present the experimental demonstration of the differential phase-time shifting protocol (DPTS) up to 170 km of fiber link. We compare its performance with the well-known coherent one-way (COW) and the differential phase shifting (DPS) protocols, demonstrating a higher secret key rate up to 100 km. Moreover, we propagate a classical signal in the same fiber, proving the compatibility of quantum and classical light.Comment: 5 pages, 3 figures, journal pape

    Orbital angular momentum states enabling fiber-based high-dimensional quantum communication

    Get PDF
    Quantum networks are the ultimate target in quantum communication, where many connected users can share information carried by quantum systems. The keystones of such structures are the reliable generation, transmission and manipulation of quantum states. Two-dimensional quantum states, qubits, are steadily adopted as information units. However, high-dimensional quantum states, qudits, constitute a richer resource for future quantum networks, exceeding the limitations imposed by the ubiquitous qubits. The generation and manipulation of such DD-level systems have been improved over the last ten years, but their reliable transmission between remote locations remains the main challenge. Here, we show how a recent air-core fiber supporting orbital angular momentum (OAM) modes can be exploited to faithfully transmit DD-dimensional states. Four OAM quantum states and their superpositions are created, propagated in a 1.2 km long fiber and detected with high fidelities. In addition, three quantum key distribution (QKD) protocols are implemented as concrete applications to assert the practicality of our results. This experiment enhances the distribution of high-dimensional quantum states, attesting the orbital angular momentum as vessel for the future quantum network

    Experimental generalized quantum suppression law in Sylvester interferometers

    Get PDF
    Photonic interference is a key quantum resource for optical quantum computation, and in particular for so-called boson sampling machines. In interferometers with certain symmetries, genuine multiphoton quantum interference effectively suppresses certain sets of events, as in the original Hong-Ou-Mandel effect. Recently, it was shown that some classical and semi-classical models could be ruled out by identifying such suppressions in Fourier interferometers. Here we propose a suppression law suitable for random-input experiments in multimode Sylvester interferometers, and verify it experimentally using 4- and 8-mode integrated interferometers. The observed suppression is stronger than what is observed in Fourier interferometers of the same size, and could be relevant to certification of boson sampling machines and other experiments relying on bosonic interference.Comment: 5 pages, 3 figures + 11 pages, 3 figures Supplementary Informatio

    Feasibility of Quantum Communications in Aquatic Scenario

    Get PDF

    Air-core fiber distribution of hybrid vector vortex-polarization entangled states

    Get PDF
    Entanglement distribution between distant parties is one of the most important and challenging tasks in quantum communication. Distribution of photonic entangled states using optical fiber links is a fundamental building block towards quantum networks. Among the different degrees of freedom, orbital angular momentum (OAM) is one of the most promising due to its natural capability to encode high dimensional quantum states. In this article, we experimentally demonstrate fiber distribution of hybrid polarization-vector vortex entangled photon pairs. To this end, we exploit a recently developed air-core fiber which supports OAM modes. High fidelity distribution of the entangled states is demonstrated by performing quantum state tomography in the polarization-OAM Hilbert space after fiber propagation, and by violations of Bell inequalities and multipartite entanglement tests. The present results open new scenarios for quantum applications where correlated complex states can be transmitted by exploiting the vectorial nature of light

    Calcium-sensing receptor and calcium kidney stones

    Get PDF
    Calcium nephrolithiasis may be considered as a complex disease having multiple pathogenetic mechanisms and characterized by various clinical manifestations. Both genetic and environmental factors may increase susceptibility to calcium stones; therefore, it is crucial to characterize the patient phenotype to distinguish homogeneous groups of stone formers. Family and twin studies have shown that the stone transmission pattern is not mendelian, but complex and polygenic. In these studies, heritability of calcium stones was calculated around 50

    Path-encoded high-dimensional quantum communication over a 2 km multicore fiber

    Full text link
    Quantum key distribution (QKD) protocols based on high-dimensional quantum states have shown the route to increase the key rate generation while benefiting of enhanced error tolerance, thus overcoming the limitations of two-dimensional QKD protocols. Nonetheless, the reliable transmission through fiber links of high-dimensional quantum states remains an open challenge that must be addressed to boost their application. Here, we demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states. Leveraging on a phase-locked loop system, a stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.Comment: to appear in npj Quantum Informatio

    Biliverdin Protects against Liver Ischemia Reperfusion Injury in Swine

    Get PDF
    Ischemia reperfusion injury (IRI) in organ transplantation remains a serious and unsolved problem. Organs that undergo significant damage during IRI, function less well immediately after reperfusion and tend to have more problems at later times when rejection can occur. Biliverdin has emerged as an agent that potently suppress IRI in rodent models. Since the use of biliverdin is being developed as a potential therapeutic modality for humans, we tested the efficacy for its effects on IRI of the liver in swine, an accepted and relevant pre-clinical animal model. Administration of biliverdin resulted in rapid appearance of bilirubin in the serum and significantly suppressed IRI-induced liver dysfunction as measured by multiple parameters including urea and ammonia clearance, neutrophil infiltration and tissue histopathology including hepatocyte cell death. Taken together, our findings, in a large animal model, provide strong support for the continued evaluation of biliverdin as a potential therapeutic in the clinical setting of transplantation of the liver and perhaps other organs
    • …
    corecore